Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

نویسندگان

  • Ansarullah
  • Colette Free
  • Jenica Christopherson
  • Quanhai Chen
  • Jie Gao
  • Chengyang Liu
  • Ali Naji
  • Alex Rabinovitch
  • Zhiguang Guo
چکیده

Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birth and death of human β-cells in pancreases from cadaver donors, autopsies, surgical specimens, and islets transplanted into mice.

There is great interest in the potential of the human endocrine pancreas for regeneration by β-cell replication or neogenesis. Our aim was to explore this potential in adult human pancreases and in both islet and exocrine tissue transplanted into mice. The design was to examine pancreases obtained from cadaver donors, autopsies, and fresh surgical specimens and compare these findings with those...

متن کامل

Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP1 receptor levels and GPR119-activated GLP1 secretion

We previously demonstrated that the overall incretin effect and the β-cell responsiveness to glucagon-like peptide-1 (GLP1) are increased in insulin-resistant mice and may contribute to the upregulated β-cell function. Now we examined whether this could, first, be explained by increased islet GLP1 receptor (GLP1R) protein levels and, secondly, be leveraged by G-protein-coupled receptor 119 (GPR...

متن کامل

Stimulating β-Cell Regeneration by Combining a GPR119 Agonist with a DPP-IV Inhibitor

BACKGROUND Activating G-protein coupled receptor 119 (GPR119) by its agonists can stimulate glucagon like peptide-1 (GLP-1) release. GLP-1 is rapidly degraded and inactivated by dipeptidylpeptidase-IV (DPP-IV). We studied the efficiency of combining PSN632408, a GPR119 agonist, with sitagliptin, a DPP-IV inhibitor, on β-cell regeneration in diabetic mice. MATERIALS & METHODS Diabetes in C57BL...

متن کامل

GPR119 regulates murine glucose homeostasis through incretin receptor-dependent and independent mechanisms.

G protein-coupled receptor 119 (GPR119) was originally identified as a β-cell receptor. However, GPR119 activation also promotes incretin secretion and enhances peptide YY action. We examined whether GPR119-dependent control of glucose homeostasis requires preservation of peptidergic pathways in vivo. Insulin secretion was assessed directly in islets, and glucoregulation was examined in wild-ty...

متن کامل

γ-Aminobutyric Acid Regulates Both the Survival and Replication of Human β-Cells

γ-Aminobutyric acid (GABA) has been shown to inhibit apoptosis of rodent β-cells in vitro. In this study, we show that activation of GABAA receptors (GABAA-Rs) or GABAB-Rs significantly inhibits oxidative stress-related β-cell apoptosis and preserves pancreatic β-cells in streptozotocin-rendered hyperglycemic mice. Moreover, treatment with GABA, or a GABAA-R- or GABAB-R-specific agonist, inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016